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Recurrence Relations for Hypergeometric Functions 
of Unit Argument 

By Stanislaw Lewanowicz 

Abstract. We show that the generalized hypergeometric function 

P,1 := p+3FP+2 -nn+2 1,a (n > 0) 

satisfies a nonhomogeneous recurrence relation of order p + a, where a = 0 when p + 3 + 2 (1) 

is balanced, and a = 1 otherwise. Also, for 

Us (dq), ( n+ A) 4+2 q+l n + dq,,2n + A + 1|1 n>O 

a homogeneous recurrence relation of order q + 1 is given. 

1. Notation. The generalized hypergeometric series 

a,,a~l... a+1 00 [P?1 p ] 
(1.1) p+' (t ail, b p = E [ Al (ai)kZ k/k! H (b1)k, 

where 

(1.2) (a)k:= F(a + k)/F(a), 

converges for Iz I < 1. Further, this series is absolutely convergent for Izi 1 if 
(p~l p 

(1.3) Re? ai- E b 1< 0. 
i=1 j=i 

However, if any ai is zero or a negative integer, then (1.1) always converges, since it 
terminates. If any bj is 0 or a negative integer, the series is not defined. If ai = by for 
some i and], 1 < i < p + 1, 1 < j < p, thenP+lEp reduces topFp-1. 

If in (1.1) z = 1, and the parameters are such that 
p+1 P 

(1.4) 1+ Ea = bj, 
1=1 ,j=1 

then the pFp is said to be balanced. 
Throughout, we employ a contracted notation. Given the function M, we define 

p+1 P 

M(ap+,):= rl M(ai)q M(bp):= 11 M(bj). 
j=1 
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The symbol 1 + ah- aP+l stands for the set+ah-a, 1+ah-a2,..., h1 + a 
- a hl 1 + ah - aa+19.., 1 + ah ap+ . Thus we may write (1.1) in abbreviated 
form 

P+1F a z= E [(ap+J)kzk/k!(bp)kI. 

For a treatment of the generalized hypergeometric functions, see any of the 
references [1], [4], [5]. 

2. Introduction. In this paper we derive new difference equations satisfied by the 
functions 

-n, n + X, ap,1 
(2.1) Pn = p+3FP+2 bp+2 1 

(2.2) U= (d i) (n +A)nFq+2 
i 

n + dq 2n + X + 1 
(dq)n (n + Xnq 

(n =0,1,...). 
Notice that recursion relationships of the forms 

p+2 

(2.3) E Gm(n; p + 2)Dn-m = y(n; p + 2), 
m=O 
q+2 

(2.4) E, (-1)mHmjn; q + 2)4,n+m = 0. 
P?? = 0 

where Gm(n; t), Hm(n; t), y(n; t) are rational in n (see formulae (3.1), (3.2) and 
(3.11) below), are satisfied by (2.1) and (2.2), respectively. The relations are of order 
p + 2 and q + 2, respectively. This result can be deduced from some general 
theorems due to Wimp [8] (see also [4, vol. 2, p. 135 ff.]). 

We show that (2.1) also obeys the difference equation 
p+a 

(2.5) E Gjn; p + u)Dn-m = y(n; p + a), 
m=O 

of order p + a, where a = 0 for the balanced case, 
P p+2 

X+2+ Eai= E bj, 
i=1 j=1 

and a = 1 for the general case. Further, we show that (2.2) obeys the equation 
q+1 

(2.6) E (-1)mHm(n; q + 1)4'n+m = 0, 
m=O 

of order q + 1. Notice that the coefficients of Eqs. (2.3) and (2.5) are formed 
according to the same general rule (3.1). A similar statement is true for the 
coefficients of (2.4), (2.6) and for formula (3.2). 

For applications, it is convenient to have available the functions which satisfy the 
same difference equation as does Pn (Un respectively), or the homogeneous form of 
this equation. A theorem, given in the next section, also provides information of this 
kind. 
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3. Results. Let p, q, n, m, t be integers > 0. Let X, ai (i = 1, 2, ... ,p), b1 (j= 
1, 2,. ..,p + 2), ck (k = 1, 2,. ..,q + 2), di (I = 1, 2, .., q) be complex constants. We 
define the functions 

G,,1(n; t):= 
(n + 1 - m)m(2n + X - 2m)2m 

(n + A-m)m(2n + X - m - t)m(n + bp+2- 1) 

x(M!(n - r-1 + bp+2) 

(3.1) F -m,2n + X - m - t, n - m + bp+2 
P+-4P+3l 2n + X - 2m + 1, n - m-1 + bp+2 ) 

+ F() (2n + A - m - t)(n - m + ap) 

(1 - m,2n + X - t + 1, n - m + 1 + a 
2n + X - 2m + 1, n-m + a J 

H,,3(n; t)- (2n + X)m(n + /B + 1)m 
(n + X)m 

S 1 { -~m, n + 2n + A, n + 1 + cq+ 
- t ~~M! q+4 q+3 2n + A. + q + 2, n + Cq+2| 

(3.2) (2n + X + m)(n + dq) 

rn(m)(n + Cq+2) 

( 1-m,l2n + + m + 1, n + 1 + dq 
Xq+2 q+l 2n + X + q + 2, n + dq 

Here ,B + 1 = ci for i = q + 2. We assume the parameters to be such that all 
expressions make sense. By applying a lemma of Wimp [8], we get the alternative 
forms for Gm,, Hm: 

Gm(n; t)= (-l)p(n + 1 - m)n,(2n + X - 2m)(2n + X - t + i)t, 
(n + X-m)m(2n + X-m-t)m(n-1-bp+2) 

X (t -r)!(n + X-t + 1 -+2) 

( r-t,2n + X-m-t, n + X-t + 2-bp+2 
P+4p3 2n + X-t + 1, n + X - t + 1 + bp+2 

+ (2n + X - m - t)(n + X - t + 1 -ap) F(t-rn) 

( mr-t+1,2n+X-m-t+1,n+X-t+2-a 
XP?2Fp+l2 2n + X-t + 1, n + X-t + 1-ap J 
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(-l1)q(2n + X)q+2(n + / + 1)m 

(n + X)m(2n + X + m)mi+,(n + cq+2) 

|(n + ( + m- Cq+2) 

m m-t, 2n + X + m, n + m + A + 1 - c+2| 

(3.4) q+4 q+3 12n + q + 2m + 1, n + A + m-Cq+2 

+ rt ) (2n + A + m)(n + A + m + 1 - dq) 

m - t + 1,2n + X + mn+ 1, n + m + X + 2 - dq 

q+2 q+F1 2n +X+2m + 1,n +m+ + -dq 
) J 

In particular, we have 

G0(n; t) = HO(n; t) 1 

_ (-l)'(n + 1 - t),(2n + X -:t + 1),i(n + X - t + 1 -bp+2) 
(3.5) G,(n; t) = 

(n + X - t),(2n + X - 2t + i)t-1(n - 1 + bp+2) 

(-l)q(2n + X)q+2(n + 13 + 1)t(n + X + t - Cq?2) 
Ht(n; t) - (n + X),(2n + X + t)+,i(n + cq+2) 

Observe that 

r+2Fr+lt kr 1) = 0 (M, k =0J9...) 

for m > k > r (see Luke 14, vol. 1, p. 114]). This shows that Gm(n; t) = 0 for 

m > t + I > p + 2, and Hm(n; t) = 0 for m,> t + 1 > q + 2. 
Let 

(3.6) G*(n; t):= (n + X - t),(2n + X - 2t + 1)t1,(n + bp+2- 1)Gm(n; t). 

Using (3.1), (3.3) and an identity from Luke [4, vol. 1, p. 42], one checks that 

(3.7) G,* ^(I - n- ; t) = -Gm*(n; t) (m =0,19.. .,) 

Similarly, for 

(38) Hn*H(n; t3:= (n + X)m(n + m + X - 

X(2n + X + t + 1)t(n + cq?2)Hm(n; t), 

we have 

(3.9) Ht,% (-n - X- t; t = H.*(n; t) (M = 09,1,...,9t) 

We need the following result,which can be easily obtained with the aid of some 
formulae from Luke [4, vol. 1, p. 26]. If m > r > 0, m and r integers, then 

I.0 -m +a 1+ Wr = (-1) mnr(r - h + a) 
(3.10) r2rl11Si rr\ ~r -h + a- w r 'im +O!)4w 
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for h = 0,1, where 

so:= 1, sl:= -(m)2+ (m-r+ 1)(m+r+2a-2)+ 

For n, t integers > 0, we define 

( )(n + bp+ -l)(n + X - tn) 
THEOREM. The function 

-.n, n + A, ap,1 
(3.12) Pn = p+3Fp+2 bp+2 1 

satisfies the difference equation 
p+G 

(3.13) ? G. (n; p + a)t(n-m = y(n; p + a) (n > p + a), 
m=O 

where the functions Gm and y are defined by (3.1) (or (3.3)) and (3.11), respectively, and 
P p+2 

(3.14) a:= sn( A +2+ ai - j 

Moreover, if 
P p+2 

Re(X+ Ea,- bj <-2, 
i=1 j=l 

then another solution of (3.13) with a = 1 is 

bp72 F 12 - b~+ 
(3.15) (n + l)(n + A-1)(ap - 1)P?3 P+2( n + 2,2 - n-X,2 - ap 

Ip+3FP+2( n + 1,1 -n- - ap 

Finally, if 
P P+2 

Re(A + a a,- b < -1, 
i=l j=l 

then the functions 

R = (n + 1)P(n + A - a,) Rn r(n + 1 + a,)r(n + A) 
(3.16) (1 + a1 - bp+21) 

(3.16) xp+2 p+ (1 + aj + nj1 + aj - n-A 1 + aj -a* 1 

?= 1,2a...,np)a- 
P(n + 1)F(l - n - A)r(2n + A)r(n + ap) 

n *F(n + bp+2) 

(3.17) 
x ?2J?7?1( 1-12>2na 
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+2) F( - n - X)F(n + 1)1(n + X + 1-bp+2) 
n F(2n + X + 1)F(n + X + 1 - ap) 

(3.18) / nX - 

2n+ + 1, + 1) b+ 
xp+2FP+lt 2n + X + 1, + n +X -a 1 

under the condition that no two of the quantities -n, n + X, ai (i = 1,2,... ,p) differ by 
an integer or zero, and the functions 

F_ (n + 1)1(n + X + 1 - b) 
1*(n + bk)F(n + X) 

(3.19) | 1 - bk - n,1 - bk + n + X,1 - bk+ap 
(3.19) 1~ - bk - n1 - bk + bp+2 b a 

(k= 1,2,...,p + 2) 
under the condition that no two of the parameters bj (j = 1,2, ... .,p + 2) differ by an 
integer or zero, satisfy the difference equation 

p+1 

(3.20) E Gm(n; p + 1)4n-m =0 (n > p + 1). 
m =0 

Remarks. 10. It follows from a theorem in [4, vol. 2, p. 136], that (3.12), (3.15) 
satisfy Eq. (2.3), while the functions (3.16)-(3.19) are solutions of the homogeneous 
form of this equation. 20. That the function (3.12) with bi = 1 for i = p + 2 satisfies 
a homogeneous equation of order p + 1 (Eq. (3.20), in fact) follows from results of 
Wimp [10]. (Note that formulae (5), (6) of [10] should be corrected by multiplying 
the sth term of each sum by 1/s! (see [12]).) 3?. It can be conjectured that if no ai is 
equal to any bj, the functions (3.12), (3.15) do not satisfy a nontrivial equation of the 
form (3.13) of lower order than p + a or p + 1, respectively, and none of the 
functions (3.16)-(3.19) satisfy an equation of the form (3.20) of lower order than 
p + 1. (We assume that ai, bj are not interrelated.) 

Proof. A. Putting the function (3.12) in the left-hand side of (3.13), turning the 
sum around, replacing n by n + p + a, and performing some algebra, we get 

p+O 

(3.21) E Gp?+0m(n + p + a; p + a)Pn+m = y(n + p + a; P + a)(4n + vn), 
rn =O 

where 
n+p+o (n + p + a)(n + X)(a ) n+p+a-l 

'O~n ?= E (k 4:n b - 1 E 71k 
kn p?2 k=n 

(1 k(-n -p - a)k(n + X)k(bp+2)k 

k!(bp+2 - 1)k(k + X)k 

2< 
FP+ 

k - n - p - ai k + n + A, k + bp+2 1 
P+4 2k + X+1, k - 1 - bp+2 2 
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(_,) 
k n -p - G)k(n + X + 1)k(1 + aP)k 

'qk :=k!(k + X)k(aP)k 

k - n - p -a + 1, k + n + X + 1, k + 1 + ap 

Xp+2F ?l k 2k + X + 1, k + a 

FP + 2 p+ 1 1 (k>o). 

Let 

-n-p - a, n + X, ap, 1| 
AJ=p+3P+2k bp+2 I. 1 

By applying a theorem in [4, vol. 2, p. 7], we have 
n+p+o 

(3.22) fn= ? (k ='4n + Pn, 
k=O 

where 
n-i 

Pn S k 
k=O 

Simik. rly, for 

fn*:= p+3FP+2( p -a,n + X + 1,1 + ap,1 

= bp+2 1 (- -1 (1 -fn), 
(n + p + a)(n + X)aP 

by virtue of the same theorem, we obtain 
n+p+a- 1 

fn* 2 71k 9 
k=O 

which implies 

(3.23) 1 n = n + Tn9 
where 

(n + p + a)(n + X)a n-i 

Tn = 'qkb -1 E lk. 
p+2 k=O 

Applying (3.10), we get for k = 0 1, ... , n - 1, the equations 

p+4 3 - h, h + ~,u k + bp+2 | (_l)hh!1'(2k + X + 1) 
P?4Fp?3(, 1 +p+a+ 1, k-1 -b /p+2 F(k + n+ A)(k- 1 +bp+2) 

- a1-, (h(h - 1)!F(2k + X + 1) 
V + p + aF - 1, k + ap (k + n + X + 1)(k + ap) 

where 

h:= n+p+a-k, ,iA:=2k+X-p-a, v:= ,u+2, 
p+2 P 

Ykl Zk 1, Yko = Wk + E bi, ZkO Wk + X + 2 + E ai, 
i=l i=l 

Wk:= (k-l)(p+ 2)+2 (n +p -k)2+2 (n -k- l)(n +3k+ 2X)^ 
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Hence 
n-1 n-1 

Pn 8 tkYkal Tn C kZka 
k=O k=O 

where 

_)p+n+a(p + n + a)! 
F(n + X)(bp+2 1) 

(l)k(2k + )(k + X) ( -k, k + X, ap,1 
jdk - -- k! p+3Fp+2 bp +2 1 

(k = O 1,. ..,n-). 

As, in view of the definition (3.14), Yka = Zka for a =0, 1 and k = 0, 1, . . ., n-1, we 
obtain pn = -T,. This, together with (3.21)-(3.23), implies that the function (3.12) 
satisfies Eq. (3.13). 

B. A similar argument shows that the function (3.15) satisfies Eq. (3.13) with 
a = 1. Putting Qn in the left-hand side of (3.13), we get after some algebra 

p+l 

(3.24) E Gp+1m(n + p + 1; p + 1)Qn+m - y(n + p + 1; p + ')(On + ,), 
i =O 

where 

4n:= (n + X + 1 -bp+2)K 

(3.25) P+i (-m,m+2n+X,n+X+2-bp+2 |1 
X 2tm(fnp+4p+4+ 2n+A+p+2,n+ + -bp+2|' 

4',, := (n + X + 1 -aP)Kn 

(3.26) P ) -m,m+2n+X+2,n+X+2-a 
X E2Mm(nl+ 1 2n++p+,n+X1-a P X E sm("+ 1)+2Fp1l 2n + A + p + 2, n + A + 1 - ap 

F(m + n + X- 1)F(m + 2n + X)(2m + 2n + X) 
IUM~n):= m!P(m+ n +2) 

Xp+3FP+2 m+n+2,2- - n - m,2 - a 1 

Jr(n + p + 2) 
n (1 - ap)J(n+ X)r(2n + X +p + 2) 

Notice the use of the second form, i.e. (3.3), for Gm. By applying a theorem from [4, 
vol. 2, p. 5], and making use of (3.10), we obtain the equations 

On= 
_____ . __ 

.___. . 
_ 

g*n Pn =1-gn,-Pi, n = gn + Pn, 
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where 

gn=p?3JFp?2( n + p + 2b ?2, X 1- a 

-p+2 (m+2n +A) 
Hence (3.24) is equivalent to (3.13) with 4, = Qn, and o = 1. 

C. We check that the functions (3.16) obey Eq. (3.20). Let]j be any integer from 
the set {1, 2,... ,p}. Proceeding as in part B of the proof, we get 

p+l 
(3.27) E2 Gp+im(n +p+ p + 2)R/i = y(n + p + l pn+ 1)(p}+p+) 

Pn = n 

where 4.,, and 4', are as given in (3.25), (3.26), in which, however, the functions K,, and 
~,,,( n ) are defined anew by 

F(n +p + 2) 

Kn:= (1-b3v2)w(n +=)(2n +An+d p + 2) ' 

(3.28) n)- r(m + n + A+ - a1)R(m + 2n + X)(2m + 2n + A) 

Xp+2Fp~l( m!1 (m + n +m 1 +a-n- - a a-a) 

Applying the above-mentioned theorem from [4, vol. 2, p. 5], and then using identity 
(3.10), we may write 
(3 .29) = K,,(f, - g,), 4, =n K(( - f + Pn), 

where 

(1 + a - bn?2)F(n +2AF-na1)F(2n + A + p + 2) 

p3,2:=Fu(2n+Xp2)(1":=~mn 

tn* r(n + p + 1 - aa,) 

xp+Fp~ l + -nA 2+ a + + p, 1b j-p 

,(2m+2n+AX+2)r(m+ 2n+AX+2)r(m+ n+X+ 1-a1) 

x FP m!Fm n+ +21 

m=0. rm+n+2+ ) 

F (-m,m + 2n + + 2, n + A +2 - ap ) a 

(1+ a bp+1 2Fn+ A+ p+- aF2,n+ A + 1 +a 2) 
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Now, applying the identity 

?? (2m + y)(-Mu)m a -mm + y9cp- 1j (dp) A 

m=O m!(m + iY).j+a p+2) a, dp)- u (a),(cp) 
9 

which can be deduced from another theorem in [4, vol. 2, p. 1], we conclude, after 
making an identification of the parameters (y = 2n + A + 2, a = 2n + A + p + 2, 

= a -n-A-, c 1 + -ai, di= a-ai for i= 1, 2,...,p), that Wn = 0 
The result then follows from (3.27) and (3.29). 

D. We show that the function R(nP+2) defined in (3.18), obeys (3.20). Putting 
(3.18) in the left-hand side of (3.20) yields 

p+1 

(0 Gp+im(n +p + 1;p+ )R(P+2 

= y(n + p + 1; p + 1)(-1) CKn(On* + An*) 

where c is a constant, Kn is given by (3.28), and 

n* =(n + A+ 1-bp+2) 

P+ 1 -m ,m +2n +A,Xn +A + 2-bp+2| 
vm(n)p+4F 2n + A + + 2 n + A + 1?-bp+2| 

n* = -(n + A + 1 - ap) 

X vm(n I)p+2p+l( 2- +2n+ 2, n + A + 2- a 

(-1)m(2m + 2n + A)r(m + 2n + A)r(m + n + A + 1-bp+2) 

m!F(2m + 2n + A + 1)F(m + n + A+ 1-ap) 

X 2m [m + n + A+ 1-bp+2 
xp+2 p+l 2m + 2n + A + 1,m + n + A + a 

By virtue of the theorem mentioned in part A of the proof (see [4, vol. 2, p. 7]), and 
using identity (3.10), we get 

=n 4n* =f n - Pn 

where 

F(n + A + 2-bp+2) n+A + 2-bp+2 1 
r(n + A + 1-ap) 2n + + p + 2, h + A+ 1-ap 

Pn:=Fr(2n + A + p + 2) (-1) m!+m(n) 
,m-p?2 J(+2+ ) 

Hence the result follows from (3.30). 
E. The difference equation 

p+1 

(3.31) E Gm*(n; p + 1)'n-m = 0, 
m=O 
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where the coefficients G*, are defined by (3.6), is obviously equivalent to Eq. (3.20). 
Because of the symmetry property (3.7), Eq. (3.31) is invariant under the change of 
variable n:= -n - A. Thus R(nP) = const - R(P+2?, must also be a solution of 
(3.20). 

F. As it has already been remarked, the functions (3.16)-(3.19) satisfy the 
difference equation 

p+2 
E G (n; p + 2)(n-m = 0 

m=0 

of order p + 2, and so any p + 3 of them are linearly dependent. Thus the functions 
Sn(k) (k = 1, 2,... ,p + 2) satisfy Eq. (3.20). This completes the proof of the theorem. 

As a corollary to the above results, we give a difference equation satisfied by a 
family of functions, including Un as defined in (2.2). 

COROLLARY. Let n, q be integers > 0. Let /3, A, ci (i = 1, 29 ... ,q + 1), dj (j = 

1, 2 ... ,q) be complex constants such that none of the quantities 3 + 1, A, ci, dj are 
negative integers or zero and that 

(q+2 q 

Re E ci E dj)- < 1, 
i=1 j=1 

where;,= ii + 1?a i = k + L. Thn. 'hte-fiwcjian 

(3.32) ~~(cq? 1)~ n + 
cq?2 (3.32) 

n 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~J -F d2 X 1 (3.32) Un =qd)(n+A +2 q+lt n + d 2n + X + 1 1 

satisfies the difference equation 

q+1 

(3.33) E (-1)mHm (n; q + 1)4'n+m = 0 
"n =0 

the coefficients Hm being given by (3.2) or (3.4). Further, if no two of the parameters n, 
-n - A, d (j = 1, 2, ... , q) differ by an integer or zero, then the functions 

Wnr(n + X + 1-dq) 

r(n + + 1 -cq+2)r(1- X - 2n) 

(3.34) X ?1?(d - q? n 
4+ 2 4 + l n - X91 - X - 2n 1 

W(j).= Wn 

r(2-dj-n)r(n+A+2-dj) 

(3.35) x 
1 + dj - cq+2 

q?2 q?1 2 2-d1- n ,n + X+2 -d19 1 d + d* 
I q 

(j= 21,2,...,q) 

are also solutions of (3.33). Here 

Wn:= (2n + A)r(n + A)/r(n + /3 + 1). 
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Finally, if no two of the parameters ci (i = 1, 2,... ,q + 2) differ by an integer or zero, 
then the functions 

Z(k)_ (-1) n(Ck) n 

P(n + X + 1-Ck)r(l + Ck-Cq+2) 

(3.36) ( n +Ck-n +Ck, -dq + Ck 

Xq?2 E4+i k+ Ck -Cq2 

(k= 1,2,...,q+ 2) 
also satisfy Eq. (3.33). 

Remarks. 1?. By virtue of a theorem in [8], the functions (3.32), (3.34)-(3.36) are 
solutions of (2.4). 2?. Making the substitution 

Pn* = (X - )"+"/(A) 
in (3.33) yields the equation 

q+1 

E (-1)mH.*(n; q + 1)'n*+m = 0, 
m=O 

H* being defined by (3.8). 
Proof. In (3.16)-(3.20), let p:= q, a,:= X + 1 - di, bj:= X + 1 - c;. Then we 

have 

R U)= C) i (j= 1,2, ,p), 
R(P+-) = C(P+l) , R(P+2) = C(P+2)'L4 

Sn(k) - p(k) Zn k) (k = 1,2,... ,p + 2) 

for some constants Ci), D(k), and 

T:= (-1) 1r(n + 1)F(n + /3 + 1)/(2n + X)P2(n + X). 
Now, in (3.20) make the substitution 4n:= iTn turn the sum around and replace n 
by n + p + 1. The result is 

q+1 

E T"+mGq+i-m(n + q + 1; q + 1)4In+,m = 0. 
m=O 

However, a simple calculation shows that the identity 

Tn+mGq+l-m(n + q + 1; q + 1) = pn(-1)mHm(n; q + 1) 

holds for some rational function pn (cf. (3.2), (3.3)). Thus An satisfies (3.33). 

4. Ewnupl. *r tis fiwal 3w;tro we- Riugluiatr- the- applicatien sof the- 2heorem. by 
taking some examples of problems in which functions of the type (2.1) or (2.2) occur. 
These problems were originally solved using different methods. We show that the 
solutions can be readily obtained by applying the results of Section 3. Also, there are 
new implications in some places, which seem to be interesting. 

A. Beta integral of the Jacobi function. In [2], the integral 

(4.1) me f| xa-l( -X)b lR(aP)(x) dx, Re(a) > 0, Re(b) > 0, 

is examined. Here 
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is the Jacobi function. If n is an integer > 0, then (4.2) is the nth shifted Jacobi 
polynomial. (4.1) is called a beta integral of the Jacobi function. It can be shown 
that 

(a + 1)nB(a, b) F -n n + X, b 
I'(n +1) 3 a +1, a +b J 

The theorem of Section 3 yields the second-order recurrence relation 

n(n + X - 1)(2n + X - 3)(n + a + b - 1)Mn 

+(2n + A - 3)3[u(n) - u(n - 1) - n - A + b + 1]Mn-1 

-(n +'a - 1)(n + /3 - 1)(2n + A - 1)(n + A - a - b - 1)mn-2 = 0, 

u(n):= (n + f3)(n + A - 1)(n + A - a - b)/(2n + A - 1). 

In a special case, when b = 1, this theorem gives for the integral 

(4.3) m* = I xa-lR(af)(x) dx, 
0 

the first-order recurrence relation 

(n + A - 1)(n + a)m* +(n + /3)(n + A - a -)M* 

= (2n + A - 1)(a)/Jr(n + 1). 

These recursions can be used to evaluate (4.1) or (4.3), respectively. Note that in [21 
(see also [9]), another computational scheme, based on a second-order recurrence 
relation for a certain auxiliary sequence, was used. 

B. The Wilson polynomials. The n th Wilson polynomial is defined by [6], [7] 

(4.4) Pn(t)(a+b)n4F3( a + bl,a + b2,a + b3 ) 

A = a + b1 + b2 + b3-1. 

In the sequel we use the notationf(b) for f(b1)f(b2)f(b3). Thus, (a + b)n is short 
for (a + bl)n(a + b2)n(a + b3)n. Notice that the series 4F3 in (4.4) is balanced. The 
Wilson polynomials form an orthogonal system with respect to a positive measure 
on the real line, provided a, bl, b2, b3 have positive real parts [7]. Application of our 
theorem yields the three-term recurrence formula 

(n + A)Pn+l(t) -(2n + A)2[t -(n + a)2 - v(n) + v(n + i)]pn(t) 

-(n + A - a - b)(2n + A + 1)v(n)pn_1(t) = 0, 

v(n):= n(n + a + b - 1)/(2n + A - 1), 

which agrees with Wilson's result [6]. For a + t1/2 = 1 or a - t1/2 - 1 we have the 
nonhomogeneous two-term relation 

(n + A - i)pn(t) - npn-1(t) = (a + b - 1)n(2n + A - 1). 

C. The Hahn polynomials. For real a > -1, /B > -1 and for positive integral N, the 
Hahn polynomials Qn(x) = Qn(x; a, /3, N) are defined by 

(4.5) Qn(x):= 3F2( 
n 1 )+ -x 1 (n = O9l, ... N), 
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where X:= a + 13 + 1. The polynomials Q0, Q1,... , QN constitute an orthogonal 
system on x = 0, 1,.. , N with respect to the measure 

(a + 1)X(/3 + 1)N-X/X!(N - x)!. 

The three-term recurrence relation for (4.5), obtained earlier by Weber and Erddlyi 
(see [3]), follows readily by application of the theorem of Section 3. 

It is interesting that if x = -1 or x = N + 1, then the Hahn polynomials satisfy a 
first-order nonhomogeneous equation. Namely, 

(n + X - 1)(n + a)(n - N -1)Qn(-) + n(n + /3)(n + X + N)Qn-l(-l) 

= -a(N + 1)(2n + X - 1), 

and, in view of [3], 

Qn(N + 1) = (-I)n(A 1)Qn 
(a +1n 

a similar result for Qn(N + 1) holds. 
D. Representation for 3F2(1). Recently, Wimp [11] has shown that 

,( aa2, a3 

the parameters a,, 8i3 being not interrelated, cannot be represented in closed form. 
Actually, he showed more by proving that the classical Watson formula (see [1, p. 
189]; or [4, vol. 1, p. 104]) cannot be generalized. The main tool used in the proof 
was the difference equation 

(n + X- 1)(n + a) 
(2n + X - 2)2 

(n + 8)(n + a - 1) _(n + /9 + 1)(n + a) 
(4.6) L( 2n + A - 1 2n + A + 1 

+ n + b-1 4>n 

(n + a + 1)(n + 13 + 1)(n + X - a + 1) (D 0 
(n + X)(2n + X + 1)2 

(n + a is short for (n + al)(n + a2), etc.), satisfied by 

(a)n ( n + a,n + a2,n+ +1 

n (b) (n+ X)3 2\ n+b,2n+X+1 
X = a + 13, a> -1,13> -1, 

which follows by application of the corollary of Section 3. Wimp constructed Eq. 
(4.6) by using another technique. He also gave other solutions of this equation, 
corresponding to (3.34)-(3.36). 
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